Fuzzy IDENTITY AND LOCAL VALIDITY

1. Two Sorts of Sorites

Standard sorites paradoxes can always be put into a simple canonical
form, employing the sole inference modus ponens. For example, consider
the following paradox. Take a continuum of colours going from red to
blue, and let a,, . . ., a, be a sequence of segments of this continuum
(starting at the red end) such that each segment is phenomenologically in-
distinguishable in colour from its immediate neighbours. Let Fx be the
predicate ‘x is red’. Then the untrue conclusion Fa,, can be inferred from
the premises Fa, and Fa, — Fa,,; (with 0 < n <m).

There is, however, another, and less familiar kind of kind of sorites
that uses, not modus ponens, but the substitutivity of identicals, more
specifically, the transitivity of identity. For example, given the same
sequence as before, let r refer to the hue of red of a,, and consider the
function symbol, f, whose intuitive interpretation is ‘the (phenomenolog-
ical) colour of’. Then the conclusion fa, = r can be inferred from the
premises fa, = r and fa, = fa, ., (with 0 < n < m); premises that have
exactly the same plausibility as the original sorites.

The parallels between the two sorts of paradox can be made closer
still. For note that the converses of the conditionals which are the
premises of the first kind of sorites are not at all contentious (if a,, .. ; is red,
certainly a, is red). Hence, we could easily take as premises the bicondi-
tionals (for which, of course, modus ponens is equally valid). But, intuitively,
biconditionality is to sentences what identity is to terms, namely an equiv-
alence relation satisfying substitutivity in extensional contexts).!

2. One Kind of Solution

There are, of course, many suggestions as to how the standard sorites
paradoxes should be solved. All face well known objections. In particular,
all standard accounts face problems concerning “higher order” vagueness:
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they appear to impute more precision to the semantic situation than is
actually there.2 It is not my intention to address any of this here. Solutions
can be divided into exactly two kinds: those that deny the truth of at least
one of the conditional premises, and those that deny the validity of the
inference employed.3 In this paper, I will just focus upon one aspect of
solutions of the second kind.

Such solutions must find a way of showing how an application of
modus ponens can fail. For example, a natural suggestion is to suppose
that truth comes by degrees, which can be measured, conventionally, by
numbers in the closed interval [0, 1].4 For reasons that will become clearer
later, I will reverse the usual conventions, and let O mark the true end of
the continuum. Sentences receive a truth value in this interval, and truth
conditions can be given for connectives in a natural way, as, for example,
in Lukasiewicz’s continuum-valued logic. In this, the value of o — B is
the value of B ~ the value of a. (=, here, is truncated subtraction, i.e., x
~y=x-yif x>y, and O otherwise.) Now suppose that & and 3 have the
values 0.25 and 0.5, respectively. Then the value of & — S is also 0.25.
Hence, the conclusion of a modus ponens can have a higher value (i.e., be
more false) than its premises.

Solutions of the kind that invalidate modus ponens typically monkey
around with the truth conditions for connectives and qualifiers. However,
they tend to leave identity alone. For example, in the continuum-valued
approach, it is normal to take identity to be a non-fuzzy predicate such that
the value of ‘a = b’ is 0 if the denotations of ‘a’ and ‘b’ are identical, and
1 otherwise. If you are tempted by this kind of solution (as I am), then, in
the light of the second kind of sorites paradox, this is likely to seem inad-
equate: it is natural to suppose that identity, too, must be “fuzzified.” The
rest of the paper takes a look at the consequences of this move.

3. Fuzzy Identity

Let us suppose that we are given a domain of objects, D, and that the
objects come with a distance metric, d. Specifically, d is a non-negative
real-valued function satisfying the conditions:

dix,x)=0
d(x,y) = d(y, x)
d(x, z) < d(x, y) + d(y, 2)
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where x, y, z € DS If the distance between x and y is small under the
metric, then they may not be completely identical, but they will be almost
so. That is, the degree of their identity will be nearly 0. This suggests
taking the metric itself as providing the degree of truth of an identity
statement (at least, when x and y are close).

For example, suppose that we take D to be the real numbers, and let
d(x, y) be the usual metric, |x — y|. Let ‘a’ and ‘b’ denote 1 and 1.01, re-
spectively. Then the truth value of a = b is .01, which is very true, though
not completely so. Alternatively, let D be the real plane and let d(x, y) be
the area of the symmetric difference between x and y, x\y. Let ‘a’ denote
the unit circle, and let ‘b’ denote the unit circle together with a small
disjoint circle of radius 0.1 and centered at (1, 1). Then the truth value of
a = b is ©/100, which is, again, pretty nearly completely true.

It is an easy enough task to build this idea into a formal semantics for
a language with fuzzy identity. The language is a standard first-order
language. An interpretation is a triple {D, d, I, where D is a non-empty
domain, d is a metric on D, and [ assigns denotations to all the non-
(logical constants). I assigns every constant a member of D, every n-place
function symbol a function from D~ to D, and every n-place predicate a
function from D= to [0, 1]. Identity is a special predicate, however; in par-
ticular, I (=)(x, y) = min (1, d(x, y)).

Given an interpretation for a language, A, a denotation I(¢) is
assigned to every term, ¢, by the usual recursive clause: I(ft, . . . t,) =
IHU(y), . . ., I(t,)). A truth value, v 4(@), in the interval [0, 1], is then
assigned to every formula, ¢, by the standard Lukasiewicz conditions.”
For simplicity, we assume that every member of D has a name:

VaPty ... 1) =IP)I®), . .., 1))

va(mo) =1-v4(0)

V(A B) = max (v4(@), v4(P))

va(o— P) =va(B) ~v4(®)

Va(Vx0) = lub {v 4(odx/c)); for every constant, c}

A, 1 and ¢ can be given the natural truth conditions, or defined in the
usual way. In what follows, I will often omit the subscript on v when this
should cause no confusion.
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In a many-valued logic, validity is standardly defined in terms of the
preservation of designated values, these being the values of the “accept-
able” sentences. In a fuzzy logic, an acceptable sentence is one that is
“true enough”. Now, what counts as true enough may well depend on the
context; but anything at least as true as something true enough is true
enough. Hence, designated values should at least be closed downwards
under <. It is therefore natural to take an inference to be valid in a context
with level of acceptability € (0 < £< 1) just if in any interpretation where
the values of the premises are less than &, so is that of the conclusion. In
logic, it makes sense to abstract out from the vicissitudes of context, and
define validity in terms of what works in all contexts. Hence we define
validity as follows. For simplicity, I will restrict myself to the single-
premise case. (This covers the finite-premise case, since, given the truth
conditions for conjunction, an inference with finitely many premises can
be reduced to one with a single conjoined premise. The infinite premise
case is a simple generalisation.) 7 = Kiff VEV A(v4(m) < €= v4(K) <
€). As is easy to check, this is equivalent to the following: V _4(v 4(x) <
V 4(m)). Valid arguments, then, are ones whose conclusions are always at
least as true as their premises.

4. Local Validity

An inference not containing identity is valid iff it is valid in the in-
tersection of all the Lukasiewicz systems (with variable €).8 But our
concern here is with identity, so let us pass on to this. As is easy to check,
identity is reflexive and symmetric. It is not, however, transitive. To see
this, merely consider the model where D = {0, 1, 2}, and d(x, y) is |x — y| .&/2.
Let the constants a, b, and ¢ denote 0, 1 and 2 respectively. Then Wa = b)
=Wb=c)=¢€2, whilst (a=c) =&

Although the law of transitivity fails, there is a close approximation.
If a is nearly (completely) identical to b, and b is nearly (completely)
identical to c, then a is nearly (completely) identical to c. We can be sure,
then, that the conclusion of an instance of tranmsitivity is acceptable,
provided that the premises are “true enough,” that is, sufficiently close to
0. If we use ‘€’ and ‘&’ for positive reals, then, in the language of classical
analysis: for every €, there is a d such that ia=bAb=c)< 6= Va =
¢) < & This follows from the properties of metrics. Since d(x, z) < d(x, y)
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+ d(y, z), we may simply take the required & to be &2. More generally,
consider an inference with premise 7 and conclusion k. Let us say that it
is locally valid (LV) iff V€36V A(v 4(m) < d = V 4(K) < €).° The notion
of local validity captures the idea that an inference is “reasonably safe”: if
our premises are “true enough,” the conclusion is going to be acceptable.!0

It is clear that any inference that is valid is LV; but, as we have seen,
the converse is not true: transitivity of identity is LV but not valid. Another
example of this kind is modus ponens. We have already noted that this is
invalid. To see that it is LV, suppose that for any v the value of @ A (& —
B) (and so of each conjunct separately), is less than . If V(B) < V(@), V(B)
< 4. If v(P) > V() then V(B) — V(@) < 6. Hence, V(B) < 20. In either case,
V(B) < 26. Thus, provided we choose dto be less than &2, V() will be less
than £.1! The treatment of the two kinds of sorites along these lines is
therefore essentially the same, as one would hope.

If an inference is locally valid, we know that its conclusion will be
acceptable, provided that our premises have value close enough to 0. It
should be noted that how close ‘close enough’ is, is not something that the
notion of local validity itself tells us. That an inference is locally valid just
assures us that there is some level of truth of the premises that will make
the conclusion acceptable. What that level is, will depend on features of
the particular inference in question, such as the “drop off rate” from
premise to conclusion, and non-formal features of the situation, such as
the level of acceptability required. That an inference is locally valid does
not, therefore, on its own, answer the question of whether it is applicable
on a particular occasion. Rather, the point of the notion of local validity is
to circumscribe a class of inferences with the important property that there
is an a priori guarantee that they are legitimately applicable under certain
well-defined conditions.12

It may not yet be clear why I have called the notion ‘local validity’.
To see this, consider what happens when we have a sorites argument. For
example, let 2 be the set of its major premises (conditionals or identities),
and let - be deducibility with respect to 2. The sorites is a sequence of
inferences: ¢ s, -5 ... @,_; s o, each of which is LV. It is not
difficult to see that the resulting inference, ¢, 504, is also LV. For any £> 0,
we can choose 8, _; small enough so that if the truth values of «, _; and
all the members of 2 are less than §, _, the truth value of ¢, is less than
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€. But then we can choose a J, _, such that if the truth values of ¢, _, and
all the members of X are less than J, _,, that of o, _, is less than §,_, ,
and so on . . . we can choose a §, such that if the truth values of ¢ and all
the members of X are less than &, that of ¢, is less than &;. Hence, if § is
the minimum of all the s, and the values of ¢, and all the members of X
are less than &, the value of o, is less than &, as required.!3 Hence, the
soritical inferences can be chained together with security, as long as the
premises are “true enough,” and we do not chain too many together. Chain
too many, however, and things may go wrong. This seems to capture the
sorites phenomenon exactly: sorites inferences are acceptable provided
we use them locally (to take us a short distance down the sorites), but not
globally.

Any solution to the sorites paradox must do more than show where
the unacceptable argument breaks down. It must, just as importantly,
diagnose the confusion that led us to suppose that it was sound in the first
place—otherwise the solution would leave a problem as mysterious as the
one it is meant to solve. The machinery at hand allows us to do this. Our
mistake is simply thinking that inferences that can be used over short
distances are reliable over long distances. That is, we confuse (global)
validity with local validity.

5. Evans’s Argument

Let us next look at the behaviour of the substitutivity of identicals in
these semantics. Transitivity of identity is an instance of substitutivity.
Substitutivity must therefore fail. For another example, suppose that our
language is augmented with an operator, A, whose intuitive sense is ‘it is
definitely true that’. It is natural to take W(A¢) to be 0 if (@) =0, and 1
otherwise. Now consider the inference: a = b, Aa = a + Aa = b. Choose
an interpretation where D = {0, 1}, d(0, 1) = n < €, I(a) =0 and I(b) = 1.
Then the premises have value 77 and O, respectively, whilst the conclusion
has value 1. Moreover, for any 8, we can choose 17 < 0. Hence the
inference is not even locally valid.

I choose this example because it is of some importance philosophi-
cally. There is a well-known argument due to Evans, aimed at showing that
there can be no vague objects: all true identities are definitely true. Evans’s
argument is essentially the inference we have just seen to be invalid (given
that Aa = a). Hence, it fails.14
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It is natural to defend Evans’s argument as follows. According to the
semantics given, the central inference of the argument is invalid, but this
is only because the notion of identity involved in it is not true identity, but
an ersatz. The correct notion of identity is one for which (*):

Wa = b) =0 if I(a) = I(b)
Wa = b) = 1 otherwise

For such a notion of identity, substitutivity is valid, and so the argument
works.

Such a defence would fail though: it is entirely question-begging. For
what is at issue is exactly the correct truth conditions of identity state-
ments for vague objects. And just because the truth conditions (*) are
more familiar, it does not follow that they are correct. Plausibly, the fuzzy
truth conditions do not define an ersatz identity relation, but the genuine
thing for vague objects. Suppose, for example, that I take a picture of a
against a beautiful background. a then moves. I want to take a picture of
b, and I tell them to go and stand where a was standing, which they do.
Even though b’s feet may be in a slightly different position from a’s, b is
in the same place as a. That is, the place where a had been (a vague spot)
is identical with the place where b is.

The objector does not even have a right to assume that the domain D
is furnished with a relation of the kind required for classical identity.
(Note that the semantics given make no use of identity as applied to
objects in D. The metalanguage contains a crisp identity predicate, but it
is only ever applied to truth values.) From the perspective of fuzzy
identity, the conditions (*) are not even well defined. For a start, the defi-
nition assumes the Law of Excluded Middle, which is moot. Moreover, if
the relation = between members of the domain is a fuzzy one, the condi-
tions make the relation between formulas and their truth-values fuzzy too,

which it is not.

6. Tolerance

As we see, then, substitutivity of identity, real identity, fails. But there
is more to the story. It is a feature of vague predicates (though not crisp ones)
that they are folerant with respect to small changes in their arguments.
That is, small changes in their arguments make relatively no change in the
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extent to which the predicate applies. Thus, if P is a predicate of this kind
—let us keep matters simple and consider just monadic predicates—and f
is its interpretation, then small changes to x make relatively little differ-
ence to f{x). Doubtless, if the domain, D is the reals, this means that f
should be continuous: Veddd(x, y) < 6 = [fix) — Ay)| < €). But this
condition is not sufficient. For a start, if D is not the reals, and d is a
discrete metric with a minimum difference between each pair of objects
(and this can certainly happen with vague predicates: think of ‘is small’
on the natural numbers), then this condition is automatically satisfied, no
matter what £ is. (Take & to be less than the minimum distance.) Even if f
is continuous, this is compatible with it changing arbitrarily large amounts
for arbitrarily small changes in its arguments. (Think of the exponential
function.) A natural way of cashing out the idea that frepresents a tolerant
predicate, which avoids these problems, is the condition: |{x) — Ay)| <
d(x, y) (which certainly implies continuity in the case of reals).!s
_ We may express the tolerance of a predicate, in this sense, in the object
language, if we add a new functor, o/, such that if P is any predicate Tol(P)
is a formula, and give it the following truth conditions: .

WTol(P)) = 0 if Vx,y € D, [MP)(x) - AP)D)| < d(x, y)
W(Tol (P)) = 1 otherwise

If we do this, then the following form of substitutivity is LV:
TollP) Aa=b APat\ Pb

To show this, we need to establish that VedoV A(v4(Tol(P) Aa=b A
Pa) < 8= v 4(Pb) < €). Fix €. If v 4(Tol(P)) = 1, then 6 can be any positive
real < 1. So suppose that v 4(Tol(P)) = 0, and write I(P) as f, I(a) as x and
I(b) as y. Then |[(x) — Ay)| < d(x, y). So Ay) < fx) + d(x, y). Hence, fix),
d(x,y) < &2 = f(y) < g ie., va(a=b A Pa) < &2 = v4(Pb) < & Thus
we may take J to be &2.16

7. The Fuzzy Continuum

As one application of the theory of vague identity, let us consider
briefly the fuzzy continuum. Let D be the real numbers, and let the metric
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d(x, y) be the standard distance function, |x — y|. Take a language that has
a supply of constants (for simplicity, we will take these to be the members
of D themselves), monadic function symbols and the binary predicates =
and <. Now consider the interpretation (D, d, I), where, for every
constant, ¢, I(c) = c; for any function symbol, f, I(f) is a (simply) continu-
ous function; and /(<) is the standard ordering relation on D.!7 The fuzzy
continuum of degree of coarseness &—or rather, its description—is the set
of sentences whose values in this interpretation are less than €. |

The fuzzy continuum has some interesting properties. For example,
suppose that f{0) = 1 is true (i.e., its truth value is less than &) then if r is
any real number such that 1 = r is “true enough,” f0) = r is true. For
example, suppose that € = 0.3, and that the value of A0) = 1 is 0.1.
Consider the identity f{0) = 1.1. The value of this must be less than or equal
to the sum of those of f{0)=1and 1 = 1.1, i.e., 0.2, and so this equation is true.

Does this mean that f is not single valued? Not at all! Let ¢ be any
term. Consider the sentence Vy(y =t — y = f). The value of this is 0.
Hence the value of t =t A Vy(y =t — y =) is 0, as, then, is that of Jx(x
=t A Vyly =t > y=yx)),ie, Alx(x = ¢). In particular, take ¢ to be f0);
then we have J!x(x = 0)). f is single valued; it’s just that its value is a
vague one: about 1.

Next, suppose again that f0) = 1 is true. If r is any real number such
that 0 = r is true enough, f{r) = 1 is also true. Since fis continuous, for any
g, there is a 6 such that |0 — | < 6 = |0) — {r)| < & Now suppose that the
value of {0) = 1 is 1(< €), and choose & such that [{0) — r)| < €— 1. Then
the value of f{r) = 1 is less than or equal to the sums of those of Ar) =0)
and f{0) = 1, which is less than €, as required.

More generally, suppose that the value of f{a) = b is 1. Choose r > a
such that |[r — a] < € and [r) — fla)] < €. Then the value of f{r) = b is less
than 7 + €. So, therefore, is that of dx(x > a A f{x) = b). Hence, the truth
value of fla) = b — Ax(x > a A {x) = b) is less than €. (Exactly the same
argument works if we replace ‘<’ with “>’.) Hence, whatever the argument
of a function, there are greater and lesser numbers such that it is true to
say that f applied to these takes the same value.

It seems to me that those properties of the fuzzy continuum may well
have significant implications for the issue of higher-order vagueness, and
so for the question of a general and adequate solution for the problems of
vagueness. However, that is a matter for another paper.
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8. Conclusion

We have seen that a semantics can be given for fuzzy identity which
is natural, and which also brings out the similarity between the two dif-
ferent kinds of sorites in a natural way. It makes possible the notion of
local validity, which provides for a simple and plausible diagnosis of the
mistake in sorites arguments. We have also seen that the semantics shows
the invalidity of the standard objection to fuzzy identity. As a theory of
fuzzy identity, little more could be asked of it.18

Graham Priest

The University of Queensland,
Australia

NOTES

1. The two kinds of sorities are discussed at greater length in Priest (1991).

2. Nor does appealing to dialetheism help at all. Suppose, for example, that one takes
a to be a borderline case of P iff Pa is both true and false. Then in a sorites-style transi-
tion, there will still be a precise borderline between cases where Pa is true and not false,
and cases where it is both true and false. Nor can one simply suppose that sorites
arguments are veridical; for they give rise, not just to isolated contradictions, but to near-
triviality. Let a be any object, and let P be any property such that for some b, Pb. Let b
change, gradually and continuously, into a. A sorites argument will now establish that Pa.
In particular, taking P to be the predicate x = b, it would follow that all things are one.

3. Strictly speaking, there is a third possibility: deny the truth of the minor premise.
One cannot say that such solutions are impossible: in this area, everything is contentious.
But this would be an act of extreme desperation.

4. See, e.g., Goguen (1968-69), Machina (1976).

5. In the mathematical theory of metric spaces, metrics are usually taken to satisfy the
extra condition d(x, y) = 0 = x =y, ruling out the degenerate metric (see, e.g., Dieudonné
(1969), p. 28). Whilst this condition could be added here also, it plays no significant part
in what follows.

6. The minimisation is necessary since truth values must be no greater than 1. One way
to avoid this would be to employ, instead, a normalised metric, whose value is always
between 0 and 1.

7. The Lukasiewicz truth conditions are not the only possible ones for a fuzzy logic.
However, they are ones that have very satisfactory consequences in the present context, as
we shall see.

8. For a survey of some results concerning these, see Chang (1963).

9. In the language of non-standard analysis, this is equivalent to saying that whenever
the value of 7z is infinitesimally close to zero (v 4(m) = 0), so is that of k. The proof is as
follows. (Thanks are due to Moshe Machover here.)
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Suppose that the inference is locally valid. Then for all real € there is a real § such
that V. A(v 4(m) < 8 = v 4(K) < &) is true in the standard model. Hence it is true in the
non-standard model. But now suppose that in that model v 4(n) =~ 0. Then v 4(%) < 4.
Hence v 4(x) < € And since this is true for all real €, v 4(x) = 0, as required.

Conversely, suppose that the inference is not locally valid. Then in the standard
model, for some real &, V63 A(v 4(n) < 8 A v 4(K) 2 €). Hence we can find a sequence,
(A;; i € N), such that the corresponding sequence {v(n); i € N) converges to 0, whilst
Vi v(K) 2 €is true in the standard model, and so in the non-standard model. Now let 7 be
some non-standard integer. Then in the non-standard model v, (%) = 0, by the properties
of convergence, whilst v, (k) 2 & Hence, in the non-standard model I A(v 4(m) = 0 A
WV 4(x) = 0), as required.

10. Interestingly, Adams’s probabilistic notion of reasonable validity is defined in a
very similar way (1966), p. 274.

11. Using infinitesmals there is an even easier argument: suppose that (&) = 0, and
Wa — P) = 0. Either () < W(a), and so V() = 0, or (B) = W), in which case W(f) =
W @), and hence again V() ~ 0.

12. Itis an interesting project to give a proof theory for the notion of local validity, but
one for another occasion.

13. More generally, it is an easy exercise to show that any chain of LV inferences is LV.

14. Strictly speaking, Evans’s argument is slightly different. He interprets A as ‘it is
definite that’, gives the contraposed form of the argument, and also uses property abstrac-
tion. But these differences do not affect the point being made here. For a longer discussion
of Evans’s argument along essentially the same lines, see Copeland (1994).

15. To a certain extent, this is arbitrary. The condition |[{x) — Ay)| £ k.d(x, y), where k is
some positive integer, would do just as well. However, this is no real generalisation, since
its effect can be obtained simply by renormalising d.

16. Note that requiring P to have a continuous interpretation is not sufficient to give LV.
To see this, fix £ There is no & such that V. A(v 4(a = b A Pa) < § = v 4(Pb) < ¢€). For
choose an interpretation, 4, where D is the non-negative reals, the metric is as usual,
va(a) =0, v4(b) = &2, and v 4(P)(x) = 2x&/d (which is certainly continuous). Then
v g(a = b A Pa) = 82, but v 4(Pb) = & The point is that the definition of LV requires & to
be uniform in 4. Simple continuity does not guarantee this: given &, we can always make
f rise more sharply.

17. It would be in the spirit of vagueness to fuzzify the relation, so that the interpreta-
tion of < is a tolerant approximation to the usual step-function. However, let us keep
matters simple for the present.

18. Earlier drafts of this paper were read at the Universities of Notre Dame, Torun, St.
Andrews and Uppsala. I am very grateful to many people at these places for valuable
comments and suggestions. I am also grateful to Tim Williamson and an anonymous
referee for comments that further improved the paper.
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